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1 Introduction

In the run-up to the LHC, the implementation of supersymmetry (SUSY) breaking and

its mediation are coming under renewed scrutiny. Attention has recently focussed on

how dynamical supersymmetry breaking (DSB) can be achieved, and how its effects can

subsequently be transmitted to the Standard Model sector. This interest was stimulated

by the observation of Intriligator, Seiberg and Shih (ISS) [1] that DSB readily occurs in

very simple and calculable SQCD-like models.

Clearly it is the interaction of the DSB sector with the visible sector that plays a crucial

role in BSM phenomenology. However, constructing a viable model that incorporates both

sectors presents a twofold problem: both SUSY breaking and R-symmetry breaking need

to be transmitted to the visible sector. The R-symmetry plays an important role because

supersymmetry breaking requires unbroken R-symmetry (in a generic theory) [2], which is

at odds with the fact that (Majorana) gauginos must have a mass that violates R-symmetry.

In principle the metastable models of ISS can circumvent this theorem by allowing a

moderate and controlled amount of R-symmetry breaking. What ISS reminded us is that,
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because the Nelson-Seiberg theorem [2] applies only to the global vacuum of the theory, we

are at liberty to generate gaugino masses if we are prepared to tolerate a certain amount

of metastability.

New avenues for gauge mediation were consequently opened up. One phenomenological

application came shortly after with ref. [3], which noted that because the ISS model breaks

supersymmetry in a magnetic Seiberg-dual formulation, the couplings of explicit messenger

fields to the DSB sector is naturally suppressed by powers of ΛISS/MP l where ΛISS is of or-

der the Landau pole in the theory.1 Thus the magnetic theory can maintain an approximate

R-symmetry even if the underlying electric theory has no R-symmetry and is generic. The

phenomenology of this scenario is similar to standard gauge mediation although, because

of the weakness of the coupling to the DSB sector, the scale of supersymmetry breaking

has to be much higher than is normally assumed. An alternative method of dealing with

the R-symmetry question is to assume that it is broken spontaneously. Several examples

of both one-loop and tree-level R-symmetry breaking were developed in refs. [4–10] and

very minimal models of direct mediation (i.e. where the “quarks” of the dynamical SUSY

breaking sector play the role of messengers) [11–15] based on a “baryon”-deformation of the

ISS model were developed in refs. [5]. These followed earlier developments in refs. [16–28].

A distinction between the phenomenology of the two kinds of model was drawn in

ref. [8] where it was noted that, whereas the explicit mediation models are rather similar to

standard gauge mediation, the direct mediation models can differ significantly, with much

heavier scalar superpartners than usual. (Benchmark points were presented in ref. [8] to

support this, and also to show that a baryon-deformed ISS model coupled to the MSSM

model, provides a fully calculable system of broken supersymmetry.) Several questions re-

main however which we will address in this paper. At first sight, one might suspect that this

kind of spectrum indicates a residual approximate R-symmetry in the model, possibly be-

cause it is broken spontaneously at one-loop — indeed this would seem to be a mildly split

version of the argument presented in ref. [29]. On closer inspection however, the precise rea-

son for the suppression of gaugino masses is a little more complicated. Moreover the ISS-like

DSB sector itself may become phenomenologically important because, in direct mediation,

it contains states charged under SM gauge groups that are light (typically of order 1 TeV).

This paper follows the story to its logical conclusion: we will catalogue the possible

ways that such supersymmetry and R-symmetry breaking ends up in the visible sector,

using various exemplary models of different types of breaking and gauge mediation (direct

or indirect). We conclude that direct mediation generically yields phenomenology quite

different from normal gauge mediation. This is due partly to the R-symmetry and partly

to the fact that in direct mediation one of the fields to which the messengers couple is a

pseudo-Goldstone mode. Generally the visible sector phenomenology ranges from a mildly

split spectrum to a very heavy scalar (split-SUSY like) spectrum. In addition, in direct

mediation the pseudo-Goldstone modes are expected to enter the visible spectrum, giving

a rich source of new TeV mass particles associated with the SUSY breaking sector. This

1Strictly speaking it is the mass scale governing the identification of the composite meson QQ̃ of the

electric ISS theory with the elementary meson Φ of the magnetic theory, QQ̃ = ΛISSΦ
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is similar to the effects of light pseudomoduli which have been found in [30] in the context

of explicit R-symmetry breaking models.

We will also note that explicit mediation and spontaneously broken R-symmetry can

be problematic in ISS-like models, due to the possibility that messengers become tachyonic.

Thus the best prospect for indirect gauge mediation (i.e. with explicit messengers) is explicit

R-symmetry breaking of the form discussed in ref. [3].

1.1 Overview

Our point of reference for the present paper is, the model of ref. [5], which introduced into

the ISS superpotential a so-called “baryon deformation” that projected out some of the R-

symmetry to satisfy the condition that some fields get R-charges different from 0 and 2 [4].

This baryon-deformed, or ISSb model, is a natural deformation of the ISS model which at

tree-level has a runaway to broken supersymmetry. Upon adding the Coleman-Weinberg

contributions to the potential, the runaway direction is stabilized at large field values where

the R-symmetry is spontaneously broken. If part of the flavour symmetry of the ISS model

is gauged and identified with the parent SU(5) of the Supersymmetric Standard Model

(SSM), the magnetic quarks can then be enlisted to play the role of messengers, providing

an extremely simple model of direct mediation. Moreover it was shown in ref. [31] that

the Landau pole problem that usually plagues direct gauge mediation can be avoided: this

is because the ISS model itself runs into a Landau pole above which a well-understood

electric dual theory takes over. This results in a nett reduction in the effective number of

messenger flavours coupling to the SSM above the scale ΛISS, and this in turn prevents

the Standard Model coupling running to strong coupling — a scenario dubbed “deflected

gauge unification”.

In this paper we would like to generalize these observations to a much wider class of

models. In order to do this we will begin in the following section by introducing an alter-

native way to break the R-symmetry of the ISS model spontaneously, by adding a meson

term (with some singlet fields) to the superpotential. We call this the “meson-deformed”

ISS model, or ISSm model. This bears some resemblance to the class of models considered

previously in ref. [9], although now the R-symmetry is broken radiatively rather than at

tree-level, thus allowing it to be somewhat simpler. We will show how supersymmetry and

R-symmetry are broken, using both an analytic tree-level analysis and then a numerical

minimization of the full Coleman-Weinberg potential.

We then, in section 3, go on to show how the supersymmetry breaking can subsequently

be mediated, first in Subsection 3.1 with an explicit (indirect) mediation where we introduce

an additional messenger sector, and then in Subsection 3.2 with direct mediation. In the

former case the phenomenology is similar to the standard gauge mediation picture [32] –

that is gauginos and scalars have similar masses governed by a single scale and related by

functions of the gauge couplings and group theory indices. In particular the absence of

tachyonic messenger states requires the explicit mediation model to lie in this regime, and

we argue that this is likely to require additional explicit R-symmetry violating messenger

mass terms. (In this case the spontaneous R-symmetry breaking that we have so carefully
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arranged would become irrelevant.) Thus indirect gauge mediation in the ISS model works

best with explicit R-symmetry breaking of the form discussed in ref. [3].

On the other hand in Subsection 3.2 we find that the directly mediated meson-deformed

model does avoid tachyons without explicit R-symmetry breaking and gives phenomenology

of a different sort, similar to that of the baryon-deformed model: the gaugino masses are

suppressed. We then turn to one of the main goals of the paper which is to answer the

question of why gauginos are so light compared to the scalar spectrum, and to see if

this is a generic feature of spontaneously broken R-symmetry, or is more to do with how

the mediation occurs. In fact we shall see that both aspects play a role: it occurs only

with direct mediation, but is also related in a rather indirect way to the fact that the R-

symmetry is broken spontaneously. The R-symmetry and the equations of motion enforce

certain relations between the F -terms which makes the gaugino masses cancel at leading

order in messenger mass-insertions. Once the one-loop Coleman-Weinberg contributions

to the potential are included the F -terms violate these classical relations and generate

non-trivial contributions to gaugino masses at the leading order in mass-insertions (the

numerical analysis shows that the precise behaviour is rather complicated). It is this effect

which gives the leading contribution to the gaugino masses.

In addition, in this gaugino suppressed regime, we shall find that the contribution from

the adjoint pseudo-Goldstone modes , whose mass is lifted only at one-loop, can become

important. In Subsection 3.2.2 we consider this second question in more detail. We shall see

that the pseudo-Goldstone modes can have a significant impact on the SSM mass spectrum,

and indeed their mediated contribution to the gaugino mass can be dominant in precisely

the direct mediation models where the gauginos are light. This is because their one-loop

suppressed mass makes them behave like a mediating sector with a correspondingly lower

messenger scale. Moreover in order to give TeV scale SUSY breaking in the visible sector,

the scale of hidden SUSY breaking is typically taken to be order 16π2

g2
TeV or slightly higher.

Thus the one-loop suppressed masses of the pseudo-Goldstone modes are typically around

the scale of SUSY-breaking in the visible sector. This is a generic prediction: models of

direct gauge mediation predict additional (with respect to the MSSM) scalar and fermion

states in the visible sector, corresponding to pseudo-Goldstone modes, whose masses are

close to the weak scale. We also note that the gaugino masses do not necessarily obey

the usual relation where their mass ratios scale with the ratios of the coupling constants.

Finally in section 4 we repeat the entire analysis for the baryon-deformed model. We find

that the picture is similar.

Thus we conclude that indirect explicit mediation gives the standard picture of gauge

mediation and that explicit R-symmetry breaking masses for messengers are most likely

required. On the other hand direct mediation leads to a mass spectrum with heavy scalars

and suppressed gaugino masses. Here the R-symmetry breaking can be spontaneous, in

which case the pseudo-Goldstone modes can play a significant role in the mediation and in

the visible sector phenomenology.

– 4 –
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2 Meson-deformed ISS theory as the susy-breaking sector

As summarized in the Introduction, there are two simple types of deformation one might

contemplate adding to the ISS model in order to make it spontaneously break R symmetry

and generate Majorana gaugino masses in the visible sector. The first was presented in

refs. [5, 8] and corresponds to adding a baryonic operator to the original model. That

possibility will be examined and extended in section 4. Here we will discuss an alternative

possibility which is to add appropriate mesonic deformations to the original model.

We will work entirely in the low-energy magnetic (i.e. relevant to collider phenomenol-

ogy) description of the ISS model [1]; it contains Nf flavours of quarks and anti-quarks,

ϕ and ϕ̃ respectively, charged under an SU(N) gauge group, as well as an Nf × Nf me-

son Φij which is a singlet under this gauge group. This is an SU(N) gauge theory with

N = Nf −Nc which is weakly coupled in the IR. The ISS superpotential is given by

WISS = h(Φijϕi.ϕ̃j − µ2
ijΦji) . (2.1)

The coupling h is related to the different dynamical scales in the electric and magnetic

theories (or equivalently the mapping between the two gauge couplings). The parameter

µ2
ij is derived from a Dirac mass term mQQQ̃ for the quarks of the electric theory: µ2 ∼

ΛISSmQ where the meson field Φij = 1
ΛISS

QiQ̃j and where ΛISS is the Landau pole of

the theory. Equation (2.1) gives the tree-level superpotential of the magnetic ISS SQCD

theory; there is also the non-perturbatively generated

Wdyn = N

(

detNf
hΦ

Λ
Nf−3N
ISS

)
1
N

, (2.2)

which gives negligible2 contributions to physics around the SUSY-breaking vacuum.

The flavour symmetry of the magnetic model is initially SU(Nf ). When we do direct

mediation, see section 3.2, an SU(5)f subgroup of this symmetry is gauged and identified

with the parent SU(5) of the Standard Model, so that Nf ≥ N+5. On the other hand indi-

rect mediation, considered in section 3.1, involves the introduction of explicit messengers

and in that case Nf is a free parameter.

To visualise the the general set-up, let us first consider a simple example, which is

appropriate for either case: we shall choose an SU(2) gauge group for the magnetic dual

theory and Nf = 7 flavours, with the flavour symmetry broken by µij to SU(2)f × SU(5)f .

We will refer to this as the 2-5 model which was the also the prototype model3 considered

in refs. [5, 8]. The matter field decomposition under the SU(2)f ×SU(5)f flavour subgroup

and the charge assignments under SU(2)gauge ×SU(2)f ×SU(5)f ×U(1)B×U(1)R are given

in table 1. Note that we use an f -suffix to stand for “flavour” but one should remember

2The only exception to this is the R-axion field. For this the explicit R-symmetry breaking contained

in Wdyn gives a contribution to the mass [5] which importantly facilitates the evasion of astrophysical

bounds [33–35]. For a recent discussion of the R-axion detection prospects at the LHC see [36].
3We will show momentarily that the meson-deformed ISS model actually requires a slightly more general

flavour-breaking pattern which can be described by 1-1-5 and 2-2-3 models or their generalisations. For

baryon-deformations all of these models, including the simplest 2-5 scenario will also work.
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2-5 Model SU(2)mg SU(2)f SU(5)f U(1)B U(1)R

Φij ≡
(

Y Z

Z̃ X

)

1

(

Adj + 1 �̄

� 1

) (

1 �

�̄ Adj + 1

)

0 2

ϕ ≡
(

φ

ρ

)

�

(

�̄

1

) (

1

�̄

)

1
2 R

ϕ̃ ≡
(

φ̃

ρ̃

)

�̄

(

�

1

) (

1

�

)

−1
2 −R

Table 1. The 2-5 Model. We show the ISS matter field decomposition under the gauge SU(2),

the flavour SU(2)f × SU(5)f symmetry, and their charges under the U(1)B and R-symmetry. Both

of the U(1) factors above are defined as tree-level symmetries of the magnetic ISS formulation in

eq. (2.1). The (small) non-perturbative anomalous effects described by eq. (2.2) are not included.

In the absence of baryon-deformations, the R-charges of magnetic quarks, ±R, are arbitrary and

can always be re-defined by considering instead a linear combination of U(1)B and U(1)R factors.

that in direct mediation SU(5)f contains the gauge group of the Standard Model.

In the case of the 2-5 model, by a gauge and flavour rotation, the matrix µ2
ij can be

brought to a diagonal 2-5 form:

2 − 5 Model : µ2
ij =

(

µ2
Y I2 0

0 µ2
XI5

)

, µ2
Y > µ2

X . (2.3)

Now consider adding the following deformation4 involving the meson plus some addi-

tional singlet fields A,B,C:

Wmeson−def = h(m1A
2 +m2BC + λAB tr(Φ)) . (2.4)

Here we chose to scale all the superpotential parameters with h. The meson deformation

of the ISS model is characterised by the dimensionless coupling constant λ. In the electric-

dual ISS formulation this deformation is ∼ 1
MPl

ABtr(QQ̃) and thus

λ ∼ ΛISS

MP l
≪ 1 . (2.5)

The new singlet fields are constrained to have R-charges given in table 2; these are different

from 0 or 2, so spontaneous R-symmetry breaking is a possibility [4, 10].

The combined effect of WISS + Wmeson−def , gives a generic R-symmetry preserving

superpotential which defines the low-energy magnetic formulation of our meson-deformed

ISS theory. This is a self-consistent approach since, as pointed out in ref. [8], R-symmetry

4A similar deformation involving a meson operator and two singlet fields was previously considered in

ref. [6]. Their model, however, contained a runaway direction to a supersymmetric vacuum. For generic

values of parameters, this makes the non-supersymmetric R-breaking vacuum of [6] short-lived and unstable

to decay in the runaway direction. We will see below that our version of the meson-deformed model defined

by eqs. (2.4), (2.1) with a 2-2-3 or 1-1-5 flavour patterns does not have a supersymmetric runaway, and the

resulting susy-breaking vacuum is stabilised.

– 6 –
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U(1)R

A 1

B −1

C 3

Table 2. R-charges of A,B,C singlet fields of the meson deformation in eq. (2.4).

breaking in the electric theory is controlled by a small parameter.5 Terms quadratic in

the meson Φ that could arise from lower dimensional irrelevant operators in the electric

theory are forbidden by R-symmetry. Thus, our deformation is described by a generic

superpotential and WISS +Wmeson−def gives its leading-order terms.

Being an exact symmetry of the tree-level magnetic superpotential, the R-symmetry of

this model is actually spontaneously-broken, as we have already alluded to above. We shall

consider this R-symmetry breaking before we discuss the SUSY breaking and its mediation.

First note that for any non-zero 〈AB〉 we can define an effective µ2 term

µ2
eff = µ2 − λ〈A〉〈B〉. (2.6)

Thus the magnetic quarks acquire VEVs precisely as they do in the undeformed ISS but

with µ2 replaced by µ2
eff ;

〈ρ〉 = 〈ρ̃〉 = 0 (2.7)

〈φφ̃〉 = µ2
Y eff . (2.8)

The VEVs of tr(Φ) and C will simply set 〈FA〉 = 〈FB〉 = 0; that is

〈tr(Φ)〉 = −2m1〈A〉
λ〈B〉 (2.9)

〈C〉 = −λ〈A〉 〈tr(Φ)〉
m2

=
2m1〈A〉2
m2〈B〉 . (2.10)

At this point the full potential is

V =

7
∑

i=3

h2|(µ2
eff)ii|2 + |FC |2 = 5h2|µ2

X − λ〈AB〉|2 + h2m2
2|B|2 , (2.11)

so there is a runaway to unbroken SUSY in the direction B → 0 and A = µ2
X/λB → ∞

along which the R-symmetry is broken.

5In principle, it is known that the apparent R-symmetry of the magnetic formulation of the ISS SQCD is

an approximate symmetry of the underlying electric theory: it is broken by the anomaly as per eq. (2.2). (At

the same time, the anomaly-free combination of U(1)R and the axial symmetry U(1)A is broken explicitly

by the mass terms of electric quarks mQ.) However, the R-symmetry is broken in the electric theory in a

controlled way [8] by small parameter, mQ/ΛISS = µ2/Λ2
ISS ≪ 1. As such the R-symmetry is preserved to

that order in the superpotential.

– 7 –
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Now, in order to end up with broken SUSY we would like to stabilize this type of

runaway with Coleman-Weinberg terms in the one-loop potential. (Note that alternatively

one could stabilize the model at tree-level using a more complicated potential and R-

symmetry as discussed in ref. [9].) We therefore need a runaway to broken SUSY since the

Coleman-Weinberg contributions vanish where SUSY is unbroken. The classical runaway

vacuum becomes non-supersymmetric if the components of the µ2
X ij matrix on the right

hand side of eq. (2.11) are no longer degenerate. This is easily achieved by breaking the

flavour group into three rather than two factors.

For example, one can consider a 2-2-3 model. Here the original SU(7)f of the ISS

SU(2)mg gauge theory is broken to SU(2)f × SU(2)f × SU(3)f . This realisation can be

thought of as the 2-5 model above where the SU(5)f flavour subgroup was further broken

to SU(2)f×SU(3)f×U(1)traceless by splitting the eigenvalues of the µ2
ij matrix. This does not

cause problems for either explicit or direct mediation. Indeed in the case of direct gauge me-

diation the SU(2)L and SU(3)c components of µ2
ij (or equivalently mQ in the electric theory)

renormalize differently below the GUT scale and so they are not expected to be the same.6

Alternatively, one can consider an even simpler example of a 1-1-5 model with Nf = 7

and Nc = 6 so that the magnetic ‘number of colours’, N = 1, and the magnetic group is

trivial. By splitting the eigenvalues of the µ2
ij matrix we choose the flavour breaking to

have the 1-1-5 pattern, SU(7)f → U(1)f ×U(1)f ×SU(5)f . For the case of direct mediation

the SM gauge group is SU(5)f .

To give a unified treatment of the 1-1-5 and the 2-2-3 models one can consider a general

N -P -X model with N +NP +NX = Nf and the µ2
ij matrix given by:

µ2
ij =







µ2
Y IN 0 0

0 µ2
P INP

0

0 0 µ2
XINX






, µ2

Y > µ2
P , µ

2
X , µ2

P 6= µ2
X , (2.12)

which corresponds to SU(Nf ) → SU(N)f × SU(NP )f × SU(NX)f as well as traceless U(1)

combinations which commute with the right hand side of eq. (2.12). For simplicity, the

rank of top left Y -corner is identified with N , the number of magnetic colours, thus the

original ISS rank condition which is responsible for the SUSY-breaking vacuum is arranged

so that FΦ = 0 when Φ = Y , see eq. (2.8), and FΦ 6= 0 when Φ is either P or X. The cor-

responding decomposition of ISS magnetic matter fields and their charges for this models

are given in table 3.

The minimization with respect to C and tr(Φ) are as in eqs. (2.9)-(2.10) before, but

minimization with respect to A, results in

〈A〉 =
NPµ

2
P +NXµ

2
X

NP +NX

1

λ〈B〉 , (2.13)

6Note that renormalization of µ2 above the scale ΛISS would be understood as renormalization of mQ

in the electric theory.
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N -P -X Model SU(NP )f SU(NX)f SU(N)mg U(1)B U(1)R

Φij ≡







Y N Z

Ñ P M

Z̃ M̃ X













1 � 1

�̄ Adj + 1 �

1 �̄ 1













1 1 �

1 1 �

�̄ �̄ Adj + 1






1 0 2

ϕ ≡







φ

σ

ρ













1

�̄

1













1

1

�̄






� 1

N R

ϕ̃ ≡







φ̃

σ̃

ρ̃













1

�

1













1

1

�






�̄ − 1

N −R

Table 3. The N -P -X Model. We indicate ISS matter field decomposition under the flavour

subgroup SU(NP )f × SU(NX)f . In direct mediation we would gauge SU(NP )f × SU(NX)f ×
U(1)traceless or its subgroup, and identify it with the SM gauge group. We also show the gauge

SU(N) and the charges under the U(1)B and R-symmetry as in table 1.

and consequently the potential

V =

Nf
∑

i=N+1

h2|(µ2
eff )ii|2 + |FC |2

= h2NP

(

µ2
P − NPµ

2
P +NXµ

2
X

NP +NX

)2

+ h2NX

(

µ2
X − NPµ

2
P +NXµ

2
X

NP +NX

)2

+ h2m2
2|B|2

= h2 NPNX

NP +NX
(µ2
X − µ2

P )2 + h2m2
2|B|2. (2.14)

Again there is a runaway but now to broken supersymmetry as desired.

Note that in the case of explicit mediation the flavour symmetries in the ISS sector are

divorced from the gauge symmetries of the Standard Model. In that case one can have a

breaking of flavour symmetry that is more general than eq. (2.12), in terms of µ2
ii. Defining

the average µii of the unbroken SU(Nf −N) factor as

µ2 =
1

Nf −N

Nf
∑

i=N+1

µ2
ii , (2.15)

we have

〈A〉 =
µ2

λ〈B〉 (2.16)

and then the generalisation of eq. 2.14 reads

V = h2

Nf
∑

i=N+1

(µ2
ii − µ2)2 + h2m2

2|B|2 . (2.17)

It is worth re-emphasizing that even in the limit A,C → ∞ and B → 0 the scalar po-

tential V is non-zero, so we have a runaway to broken SUSY. Proceeding to one-loop, the
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Coleman-Weinberg contribution to the potential is therefore expected to lift and stabilize

this direction at the same time as lifting the pseudo-Goldstone modes.

The Coleman-Weinberg effective potential [37] sums up one-loop quantum corrections

into the following form:

V
(1)
eff =

1

64π2
STrM4 log

M2

Λ2
≡ 1

64π2

(

Trm4
sc log

m2
sc

Λ2
− 2Trm4

f log
m2

f

Λ2
+ 3Trm4

v log
m2

v

Λ2

)

(2.18)

where Λ is the UV cutoff,7 and the scalar, fermion and vector mass matrices are given

by [38]:

m2
sc =

(

W abWbc+D
αaDα

c+D
αa
cD

α W abcWb +DαaDαc

WabcW
b +Dα

aD
α
c WabW

bc+Dα
aD

αc+Dαc
aD

α

)

(2.19)

m2
f =

(

W abWbc + 2DαaDα
c −

√
2W abDβ

b

−
√

2DαbWbc 2DαcDβ
c

)

m2
v = Dα

aD
βa +DαaDβ

a. (2.20)

As usual, Wc ≡ ∂W/∂Φc = F †
Φc denotes a derivative of the superpotential with respect

to the scalar component of the superfield Φc and the raised indices denote Hermitian con-

jugation, i.e. W ab = (Wab)
†. The D-terms are Dα = gzaT

αa
b z

b and they can be formally

switched off by setting the gauge coupling g = 0, which we shall do for simplicity. All

the above mass matrices will generally depend on field expectation values. The effective

potential Veff = V + V
(1)
eff is the sum of the F -term (tree-level) potential and the Coleman-

Weinberg contributions. To find the vacua of the theory we now have to minimize Veff .

Now we can check the lifting of the classical runaway direction by quantum effects in

the Coleman-Weinberg potential. We have done this numerically using Mathematica and

have also checked it with Vscape program of ref. [39]. The non-supersymmetric vacuum

is stabilised and in table 4 we give values of the VEVs for the 1-1-5 meson-deformed ISS

model for a specific choice of external parameters. It is worth noting at this point that all

the tree-level relations we have just derived get slightly shifted by the one-loop minization.

As we shall see, these one-loop effects often give the leading contribution to the mediation

of SUSY-breaking and so it is important to keep track of them. This is shown in table 4

where in the generic N -P -X model VEVs develop along the direction
〈

φ̃
〉

= ξ IN
〈

φ
〉

= κ IN
〈

Y
〉

= η IN
〈

P
〉

= p INP

〈

X
〉

= χ INX
, (2.21)

accompanied by the A, B, C VEVs as before. These are the most general VEVs consistent

with the tree-level minimization.

3 Models of mediation: from the meson-deformed ISS to the Standard

Model

In the context of gauge mediation one can consider two distinct scenarios of how super-

symmetry and R-symmetry breaking is transmitted to the visible Standard Model sector.

7Which is traded for a renormalization scale at which the couplings are defined.
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Vev κ/µX =ξ/µX η/µX p/µX χ/µX A/µX B/µX C/µX

Tree-level constrained 4.7610 0 −0.1283 −4.8242 30.7086 7.5983 248.22

Unconstrained 4.7607 0.0026 −0.1129 −4.8283 30.7973 7.5617 248.96

Table 4. The 1-1-5 Model: Stabilized VEVs for a meson-deformed ISS theory with Nf = 7,

Nc = 6, h = 1, m1/µX = m2/µX = 0.03, µY /µX = 5, µP /µX = 3 and λ = 0.01. We show both

the constrained VEVs (i.e. the VEVs obtained when the tree-level relations are enforced) and the

true unconstrained VEVs resulting from complete minimization.

The first class is ordinary gauge mediation (i.e. mediation with explicit messengers), and

the second class involves the models of direct gauge mediation. In this section we discuss

how these two possibilities can be realized for the SUSY breaking models we have outlined

in the previous section

3.1 Gauge mediation with explicit messengers

We begin in this subsection with explicit mediation. In this scenario one imagines that

there is a third sector – the messenger fields — that is responsible for generating the SUSY

breaking operators required in the visible sector. The approach in this paper is to try to

have a preserved R-symmetry that is broken spontaneously. What we shall find is that we

fall foul of the tachyonic messenger problem: ultimately we have to reintroduce explitcit

R-symmetry breaking messenger masses to avoid this and we are forced back to the explicit

mediation scenario of ref. [3].

To show this, let is first introduce an additional set of mediating fields f and f̃ trans-

forming in the fundamental (and antifundamental respectively) of the Standard Model

gauge groups. For concreteness we can take f and f̃ to be (anti)-fundamentals of the un-

derlying GUT gauge group, e.g. SU(5)GUT. In explicit medation these messengers couple

to the ISS sector via additional messenger coupling in the superpotential

Wmess = Tr(τΦ) f · f̃ , (3.1)

where τij is an arbitrary coupling which from the electric theory perspective should scale

as ΛISS/MP l as in ref. [3]. We remind the reader that there are no constraints on this

coupling coming from the Standard Model, and that the ISS parameters, such as N , Nf

are essentially unconstrained.

In order to see how the SUSY breaking enters the visible sector we need to exhibit the

mass matrices for messenger fields explicitly. At tree-level the SUSY breaking enters into

the scalar mass-squared matrices through the non-zero FΦ-terms to which the messenger

fields, f and f̃ couple. In general the matrices are given by (ignoring the D-terms)

m2
sc =

(

W abWbc W
abcWb

WabcW
b WabW

bc

)

,

mf = Wab , (3.2)
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with the Wac being the SUSY preserving mass of the fermions, and the off-diagonal terms

W abcWb containing the SUSY breaking. In this case Wff̃ = Tr(〈τΦ〉) is the Dirac mass of

the fermionic superpartners, ψf and ψf̃ , and the SUSY breaking contribution appears first

in the tree-level mass-squared of the scalars, S = (f, f̃∗). We have:

m2
sc =

(

|Tr(τΦ)|2 Tr(τ †F †
Φ)

Tr(τFΦ) |Tr(τΦ)|2

)

. (3.3)

Now, in order to avoid tachyonic messengers we must here impose the usual explicit medi-

ation constraint that

|Tr(τ〈Φ〉)|2 > |Tr(τ〈FΦ〉)| (3.4)

which is effectively a lower bound on the amount of spontaneous R-symmetry breaking

(since 〈Φ〉 is charged under R-symmetry). In particular this generally prevents us arranging

a split scenario with gauginos much lighter than squarks and sleptons, since this would be

a signature of approximate R-symmetry. (The situation is drastically different in models

of direct mediation as we shall see in the following sections.)

As we have said dimensional arguments give

τ ∼ λ ∼ ΛISS/MP l ≪ 1

so the tachyonic inequality is delicate. If one assumes that Φ ∼ µ then it seems that the

inequality is actually always violated when τ ≪ 1. But note that the same inequality can

be equivalently written in terms of singlet VEVs,

τΦ ∼ τm1
A

λB
∼ τ

λ2

m1µ
2

B2
, (3.5)

which shows that the situation is quite complicated and can only be analyzed numerically.

For the values in table 4 taking τ ∼ λ violates the inequality which suggests that it may

be problematic in general to avoid tachyonic messengers.

An explicit R-breaking mass term is a way to overcome this tachyon so that, as in

ref. [3], eq. (3.1) becomes

Wmess = Tr(τΦ) f · f̃ +Mf f · f̃ (3.6)

Hence explicit gauge mediation and spontaneous R-symmetry breaking are inconsistent

when the DSB is based on the ISS model. Note that we could have also added a term
A2f ·f̃
MPl

; however since we have 〈A〉 ∼ µP ≪ Λ the effective mass that this induces for the

messengers is even smaller than 〈Tr(τΦ)〉.
From here on the calculation of the SUSY spectrum is rather standard with values for

gaugino masses being generated being of the same order as those for scalar masses; and

so one expects a similar phenomenology to normal explicit gauge mediation [32], with the

diagram that induces the gaugino mass in the present explicit mediation case as shown

in figure 1.

However there is one feature of the present set-up that is rather interesting. The SUSY

breaking effects in the visible sector, i.e. the gaugino and squark masses, are all proportional
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Tr(τ〈FΦ〉)

Tr(τ〈Φ〉)
Figure 1. One-loop contribution to the gaugino masses from messengers f , f̃ . The dashed (solid)

line is a bosonic (fermionic) messenger. The blob on the scalar line indicates an insertion of the

F -term VEV into the propagator of the scalar messengers and the cross denotes an insertion of the

R-symmetry breaking VEV into the propagator of the fermionic messengers.

to the combination W abcWb = Tr(τ †F †
Φ). But as we have seen in the previous section, the

F -terms at the minimum (with VEV-less messengers, so that the SM gauge groups are not

Higgsed) are given at tree-level by

F †
Φij

= hδij(µ
2
ii − µ2) , (3.7)

which clearly obeys

Tr(F †
Φ) = 0 . (3.8)

This can be seen to result from the minimization of the tree-level potential with respect to

A for a given B VEV:
∂V

∂A
= λBTr(F †

Φ) = 0 . (3.9)

Thus (at tree-level) the mediation of SUSY-breaking to the visible sector requires non-

degenerate couplings τii, and indeed we can write

Tr(τFΦ) = h(τµ2 − τ̄µ2) . (3.10)

That is, only if both τ and µ have non-degeneracy can there be unsuppressed SUSY breaking

mediation, even though SUSY breaking per se requires non-degeneracy only in the latter.

However, as we have said, when the full minimization is performed, tree-level relations

such as Tr(F †
Φ) = 0 are no longer expected to hold (for example, with the unconstrained

values in the table we find Tr(F †
Φ) = −0.034µ2

X ): typically one finds Tr(F †
Φ) = µ2/(16π2),

since the effective F -term for mediation is one-loop suppressed. Thus when the τ are

degenerate one can still get mλ ∼ µ2

16π2Mf

g2

(16π2)
∼ 1 TeV if µ2/Mf ∼ 107 GeV.

3.2 Direct gauge mediation

Now, let us compute gaugino masses for the direct gauge mediation scenario from the

meson-deformed ISS sector. We first consider the effects of those direct messengers which

obtain R-symmetry breaking masses at tree-level and which couple directly to the largest

F -terms. These transform in the fundamental representation of the SM gauge groups,
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and this constitutes a strictly one-loop and formally leading order effect. Then we will

include additional, formally higher-loop, contributions from the pseudo-Goldstone modes

transforming in both adjoint and (bi-)fundamental representations of the Standard Model

gauge groups. It will turn out that the latter contributions can be of the same order.

3.2.1 Strict one-loop contributions to gaugino masses

To present a general discussion relevant for any deformation of the ISS model, by mesons,

baryons or otherwise, we shall consider models of the form

W = hΦijϕi.ϕ̃j − hµ2
ijΦji +Wmeson−def(Aa,Φ) +Wbaryon−def(Aa, φ, φ̃) (3.11)

where Aa denote generic singlets. The superpotential depends on Φ linearly, this is dic-

tated by the R-symmetry of the model and is a central feature of direct mediation in the

ISS context.

To keep the presentation simple in what follows we shall concentrate here on the 1-1-5

model, so that the parent gauge symmetry of the SM (in this case SU(5)f ) is non-split.

This discussion can also be straightforwardly generalised to the 2-2-3 and other N -P -X

models by an appropriate reassembling of building blocks below.

The all important messenger/SUSY-breaking coupling in the superpotential is in this

class of models is

1

h
W ⊃ Φijϕi.ϕ̃j ⊃ ρXρ̃+ φZρ̃+ ρZ̃φ̃+ φY φ̃ . (3.12)

The field Φ is the pseudo-Goldstone mode, although note that Fφ and Fφ̃ are non-zero as

well as FΦ – this will be important in what follows.

Gaugino masses are generated at one-loop order as indicated in figure 2. The fields

propagating in the loop are fermion and scalar components of the direct mediation ‘mes-

sengers’. Since gaugino masses are forbidden by R-symmetry one crucial ingredient in their

generation is the presence of non-vanishing R-symmetry breaking VEVs. We are at this

point interested in the contribution to the gaugino mass coming from those messenger fields

transforming in the fundamental of SU(5), which formally give the leading-order contri-

bution. (We shall consider the contribution from the X fields separately in section 3.2.2.)

First we exhibit the mass matrices of messenger fields. As before, they are given by

(ignoring the D-terms)

m2
sc =

(

W abWbc W
abcWb

WabcW
b WabW

bc

)

, mf = Wac . (3.13)

The fundamental messengers are ρ, ρ̃ and Z, Z̃: we may define a messenger fermion

multiplet,

ψ = (ρi , Zi)ferm ,

ψ̃ = (ρ̃i , Z̃i)ferm , (3.14)
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〈Fχ〉

〈χ〉
Figure 2. One-loop contribution to the gaugino masses. The dashed (solid) line is a bosonic

(fermionic) messenger. The blob on the scalar line indicates an insertion of 〈Fχ〉 into the propagator

of the scalar messengers and the cross denotes an insertion of the R-symmetry breaking VEV into

the propagator of the fermionic messengers.

where i = 1 . . . 5. Then L ⊃ ψmf ψ̃
T where the fermion messenger mass matrix is

mf = I5 ⊗
(

χ ξ

κ 0

)

, (3.15)

written in terms of the VEVs χ, κ and ξ (c.f. (2.21)):

〈X〉 = χI5, 〈φ〉 = κ, 〈φ̃〉 = ξ . (3.16)

For the scalar mass-squared matrix, we can define equivalent multiplets

S = (ρi, Zi, ρ̃
∗
i , Z̃

∗
i ) sc . (3.17)

To proceed one can diagonalise the mass matrices and compute the full one-loop contribu-

tion to the gaugino mass. That is we define the diagonalisations:

m̂2
sc = Q†m2

scQ (3.18)

m̂f = U †mfV (3.19)

with eigenvectors

Ŝ = S.Q

ψ̂+ = ψ.U

ψ̂− = ψ̃.V ∗ (3.20)

Here, the mf diagonalisation is in general a biunitary transformation.

In order to calculate the gaugino mass, we need the gauge interaction terms given by

L ⊃ i
√

2gAλA(ψ1T
AS∗

1 + ψ2T
AS∗

2 + ψ̃1T
∗AS3 + ψ̃2T

∗AS4) +H.C. (3.21)

= i
√

2gAλA(ψ̂+iŜ
∗
k(U

†
i1Q1k + U †

i2Q2k) + ψ̂−iŜk(Q
†
k3V1i +Q†

k4V2i)) +H.C. (3.22)
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Then the diagram in figure 2 amounts to8

M
(ρ,Z)
λA

=4Ng2
A tr(TATB)

∑

ik

(U †
i1Q1k + U †

i2Q2k)(Q
†
k3V1i +Q†

k4V2i) I(m̂f,i, m̂sc,k) (3.23)

where I(m̂f , m̂sc) is the appropriate one-loop integral with a fermion and a scalar. Here

the “N” reinstates the possibility of an SU(N)mg gauge group. In the diagonal mass-basis

I(a, b)=

∫

d4k

(2π)4
a

k2−a2

1

k2−b2 =
−a(η+1)

16π2
+

1

16π2

a

a2−b2
[

a2 log

(

a2

Λ2

)

−b2 log

(

a2

Λ2

)]

(3.24)

and

η =
2

4 −D
+ log(4π) − γE. (3.25)

This integral is UV-divergent, but the divergences cancels in the sum over eigenstates

as required.

Using (3.23) we can now evaluate gaugino masses in figure 2 generated by fundamental

messengers ρ, ρ̃ and Z. Numerical values for the gaugino mass for a few different values of

parameters of the model are given in the tables in section 3.3.

It is instructive to complement these numerical calculations by a simple analytic esti-

mate, and in particular explain the smallness of these gaugino mass contributions. When

the F -terms are small compared to µ2 one can expand eqs. (3.23)-(3.24). We define a

matrix of ‘weighted’ F -terms as:

Fab = W abcWc , (3.26)

and to the leading order in F obtain,

MλA
=

g2
A

8π2
N tr(TATB)Tr(F ·m−1

f ) + O(F3) . (3.27)

This is a well-known leading order in F approximation which is basis-independent. In the

appendix we give the derivation of eq. (3.27) in the general settings relevant to our model(s).

Clearly the matrix F is determined entirely by the contribution in eq. (3.12) to be

F = W abcWc = h

(

Fχ Fφ̃
Fφ 0

)

(3.28)

and since m−1
f =

(

0 1
κ

1
ξ − χ

ξκ

)

we find

M
(ρ,Z)
λA

=
g2
A

8π2
N tr(TATB)

(

Fφ̃
ξ

+
Fφ
κ

)

+ O(F3) (3.29)

Now consider the minimization condition for the tree-level potential, V =
∑

c |F c|2 with

respect to Y ∗.

1

2

∂V

∂Y ∗
= 0 =

∑

c

W Y cFc = κFφ̃ + ξFφ +W Y Aa

meson−defFAa (3.30)

8More precisely, there are actually two diagrams of this type which are mirror images of each other.
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(For the constrained 1-1-5 VEVs shown in table 4 this trivially sets η = 0.) This equation

together with eq. (3.29) implies that the tree-level leading order gaugino mass is zero

M
(ρ,Z)
λA

= 0 + O(F3) (3.31)

unless the additional singlet fields appearing in the meson deformation have non-zero F -

terms as well. (This would require an additional source of SUSY breaking beyond the

O’Raifeartaigh breaking of the ISS sector, and is therefore unattractive.) As we have

stressed, these relations are perturbed when the potential is stabilized by one-loop effects

(e.g. η is non-zero in the unconstrained model of table 4): then the estimate in eq. (3.29)

is still reasonably good, with the F -terms being derived from the one-loop equations.

This leading order suppression for the gaugino mass explains the relative smallness of

our numerical results in table 5 which shows the “reduced gaugino masses” m1/2 defined by

MλA
=

g2
A

16π2
m1/2 . (3.32)

In particular these values are much smaller than those derived for the scalars in table 6

where we show the “reduced scalar masses” m0 defined by

m2
sferm =

∑

A

g4
A

(16π2)2
CASAm

2
0 , (3.33)

where CA and SA are the standard Casimir/Dynkin indices as in ref. [40]. We note that this

suppression is also related to that in ref. [41], which tells us that FΦ does not contribute to

the gaugino masses at leading order because of the structure of mf (in particular the zero

entry). Here we find that the argument extends to quite general models of direct mediation.

3.2.2 Additional contributions to gaugino masses

The effects considered above have so far generated rather small contributions to gaugino

masses. Thus, we have to consider additional contributions, due to the adjoint X and P as

well as the bifundamental M and M̃ messengers. These messengers are massless at tree-

level and acquire masses only at loop-level. Thus their contributions to gaugino masses are

formally a higher-loop effect. After a careful consideration we find that these indeed give a

contribution to the gaugino masses which comparable to the strict one-loop effect described

above. Scalar masses being unsuppressed at leading order are not significantly effected.

For 1-1-5 type models where the SM gauge group is SU(5)f , the new contributions

arise from the Xij fields with i, j = 1 . . . 5. They contribute through the diagram shown

in figure 3. Note that the scalar vertex exists because the Coleman-Weinberg potential

induces an R-symmetry violating mass term. The fermion mass-propagator is also absent

at tree-level: since it is a Majorana term (and the X-fermions have R-charge 1) it also

violates R-symmetry and by the non-renormalization theorem it vanishes in the absence of

both R-symmetry and supersymmetry breaking. The naive expectation is therefore that

this contribution will be three-loop suppressed. As we shall see, this is not the case, and in

fact the contribution can be competitive with the previous contributions. This is because
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λ λ

〈χ†〉〈χ†〉

m⋆
χ

χ† χ†χ

χ†

χ χ

χ†

χ

Figure 3. One-loop contribution to the gaugino masses from X-messengers. The dashed (solid)

line is a bosonic (fermionic) component of X . The blob on the scalar line indicates an insertion

of 〈Fχ〉 into the propagator of the scalar messengers and the cross denotes an insertion of the

R-symmetry breaking VEV into the propagator of the fermionic messengers.

the X modes are pseudo-Goldstone modes: all their masses arise at one-loop, and the

lightness of these modes corresponds to a suppression of the effective messenger scale of

the adjoints whose mass is in fact similar to MSUSY.

Let us estimate these effects in more detail. First the mass-insertions: the scalar

mass-squareds come from the Coleman-Weinberg term

V
(1)
eff ⊃ STr

(M4

64π2
logM2

)

. (3.34)

In particular there are terms involving W̄ρZW
ZρW̄ρρ̃W

ρ̃ρ = h4ξ2|δXij |2 where X = 〈X〉 +

δX. Since typically ξ ≫ µ ≫ κ one expects R-symmetry conserving mass-squared for the

adjoints of order

m2
XX∗ ∼ h4ξ2

64π2
(3.35)

at the minimum. R-symmetry violating masses are induced by terms such as

Wρρ̃W̄
ρ̃ρWρρ̃W̄

ρ̃ρ ⊃ h4〈XδX†〉2 + h.c = h4χ2(δX∗
ijδX

∗
ji) + h.c. Hence we expect a neu-

tral mass-squared matrix for X = (XA,X∗
A) (where A is the adjoint index) of the form

m2
X

∼ δAB
64π2

(

a b

b∗ a

)

,

a ∼ ξ2 ; b ∼ χ2 . (3.36)
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χ χ

hF †
χ

〈hχ〉

ρ̃† ρ†ρ̃

ρ

ρ† ρ̃†

ρ̃

ρ

Figure 4. One-loop contribution to the Majorana masses of X-fermions. The dashed (solid) line is

a bosonic (fermionic) messenger. The blob on the scalar line indicates an insertion of 〈Fχ〉 into the

propagator of the scalar messengers and the cross denotes an insertion of the R-symmetry breaking

VEV into the propagator of the fermionic messengers.

Assuming b is real, the diagonalization of this matrix is m̂2
X

= (QX)Tm2
X
QX =

h4

64π2 diag(a+ b, a− b) where

QX =
1√
2

(

1 −1

1 1

)

. (3.37)

We will call the two eigenvalues m̂2
X±

.

The R-breaking mass term for the adjoint fermion is generated from diagram shown in

figure 4. The topology is identical to the one-loop gaugino diagram with internal states ψ, ψ̃

and S with the mass matrices and diagonalisations as in eqs. (3.18) and (3.19), although of

course the vertices are different: they come from the W ⊃ hρXρ̃ coupling and are given by

V ⊃ h (Xψ1)S
∗
3 + h(Xψ̃1)S1 + h.c. (3.38)

In terms of the previous mass eigenstates these become

V ⊃ hX (ψ̂+iŜ
∗
k(U

†
i1Q3k) + ψ̂−iŜk(Q

†
k1V1i) +H.C.

where the diagonalisation matrices Q, U and V are exactly the same as in eqs. (3.18)–(3.19).

Defining Xij =
√

2XAT
A
ij , and with standard Feynman parametization we find that the

diagram in figure 4 generates

MψX
= 4Nh2tr(TATB)

∑

ik

(U †
i1Q3k)(Q

†
k1V1i) I(m̂f,i, m̂sc,k) , (3.39)

where I(m̂f,i, m̂sc,k) is the same integral (3.24) as in (3.23).
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Note that although the diagram in figure 4 is similar to the fundamental contribution

to the one-loop gaugino mass, there is less suppression. This is because the couplings of

ρ, ρ̃ and Z, Z̃ to X are not degenerate as they are for the gaugino, indeed there is no

equivalent of the hρXρ̃ coupling for the Z, Z̃ fields at all; hence unitarity does not operate

in the same way. Following the same steps as for the gaugino in the appendix we obtain a

non-vanishing leading order result in F ,

MψA
X
≈ 4N h2tr(TATB)

∑

ijk

Ajk(U
†
i1V1j)(U

†
k1V1i) (m̂f)i J(m̂2

f i, m̂
2
f j , m̂

2
f k) (3.40)

where the matrix Aij was defined in eq. (A.3) and the function J is given by

J(a, b, c) =
1

8π2

a2b2 log
(

a
b

)

+ a2c2 log
(

c
a

)

+ b2c2 log
(

b
c

)

(a2 − b2)(a2 − c2)(b2 − c2)
. (3.41)

A very rough simple estimate is

MψA
X
∼ h2χ

32π2

FX
ξ2
. (3.42)

This should be compared to the equivalent contribution to the gaugino mass in section 3.2.1

which did vanish at this order (see eqs. (3.27),(3.31)).

Having determined the masses of X messengers we can now make an estimate for their

contribution to the gaugino mass. The general expression is

M
(X)
λA

= g2
ANX

(

I(MψX
, m̂X+

) − I(MψX
, m̂X−

)
)

, (3.43)

where NX is the rank of the X lower-right corner in eq. (2.12), which in the case of 1-1-5

type models is NX = 5.

Equation (3.43) allows us to evaluate gaugino masses generated by adjoint X-

messengers. Numerical values for the full mass expressions (without relying on estimates

and expansions in F) for the model given in table 4 are presented in table 5 in section 3.3.

In this table we give contributions from the ρ and Z messengers in the first column and

from the X messengers in the second column. The third column gives the similar contribu-

tion from M messengers which we will comment on momentarily (see eq. (3.46)). The last

column is the total result. Other tables in the same subsection follow the same structure

and give results for other models.

To understand the order of magnitude can also be understood with the help of the

following analytical estimates. As we have seen the masses are of the order

MψA
X

∼ h3χ

32π2

µ2

ξ2

m̂2
X±

∼ h4

64π2
(ξ2 ± χ2).

Thus for h . 1 we expect M2
ψA

X

≪ m̂2
X±

and we find

M
(X)
λA

=
g2
ANX

32π2
MψA

X
log

(

m̂2
X+

m̂2
X−

)

∼ g2
Ah

3NX

2(16π2)2
χ3µ2

ξ4
, (3.44)
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where the last expression is valid for χ . ξ. Note that, although in a “mass-insertion

approximation” the leading order diagram is in principle three-loop, there is only a two-

loop 1/(16π2)2 suppression.

In addition to the contribution from the adjoint X fields we have a contribution from

the M and M̃ fields. As can be seen from table 3 these are bifundamentals under the

SU(NX) and SU(NP ) groups.

MψM
= Nh2

[

∑

ik

(UP †
i1 Q

X
3k)(Q

X†
k1 V

P
1i ) I(m̂

P
f,i, m̂

X
sc,k) + (X ↔ P )

]

. (3.45)

Here, the labels P andX indicate the diagonalization matrizes for the SU(NP ) and SU(NX)

blocks, respectively (see table 3). In particular, the X is the diagonalization for the ρ and

Z messengers whereas P corresponds to the σ and N .

The corresponding contribution to the gaugino mass is,

MM
λA = 4 tr(TATB)NP

2
∑

k=1

QM
1k(QM )Tk2I(MψM

, m̂M,kk), (3.46)

where QM is the M -analog of QX matrix given in eq. (3.37). As mentioned earlier these

contributions are shown in the third column of table 5 and similar ones in the subsection 3.3.

3.2.3 Scalar masses

Having determined the gaugino masses in the preceding subsections, we now outline

the procedure for the generation of sfermion masses of the supersymmetric standard

model. As in ref. [8] we follow the calculation of Martin in ref. [40] adapted to our direct

mediation models.

Sfermion masses are generated by the two-loop diagrams shown in figure 5. In [40] the

contribution of these diagrams to the sfermion masses was determined to be,

m2
f̃

=
∑

mess.

∑

a

g4
aCaSa(mess.)[sum of graphs], (3.47)

where we sum over all gauge groups under which the sfermion is charged, ga is the corre-

sponding gauge coupling, Ca = (N2
a − 1)/(2Na) is the quadratic Casimir and Sa(mess.) is

the Dynkin index of the messenger fields (normalized to 1/2 for fundamentals).

As in the calculation of the gaugino mass we use the propagators in the diagonal

form and insert the diagonalisation matrices directly at the vertices. For the diagrams 5a

to 5f we have closed loops of purely bosonic or purely fermionic mass eigenstates of our

messenger fields. It is straightforward to check that in this case the unitary matrices from

the diagonalisation drop out. We then simply have to sum over all mass eigenstates the

results for these diagrams computed in ref. [40].

The next diagram 5g is slightly more involved. This diagram arises from the D-

term interactions. D-terms distinguish between chiral and antichiral fields, in our case

ρ, Z and ρ̃, Z̃, respectively. We have defined our scalar field S in (3.17) such that all

component fields have equal charges. Accordingly, the ordinary gauge vertex is proportional
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5. Two-loop diagrams contributing to the sfermion masses. The long dashed (solid) line

is a bosonic (fermionic) messenger. Standard model sfermions are depicted by short dashed lines.

to a unit matrix in the component space (cf. eq. (3.21)). This vertex is then ‘dressed’

with our diagonalisation matrices when we switch to the Ŝ basis, (3.22). This is different

for diagram 5g. Here we have an additional minus-sign between chiral and antichiral

fields. In field space this corresponds to a vertex that is proportional to a matrix VD =

diag(1, 1,−1,−1). We therefore obtain,

Figure 5g =
∑

i,m

(QTVDQ)i,mJ(m̂0,m, m̂0,i)(Q
TVDQ)m,i, (3.48)

where J is the appropriate two-loop integral for figure 5g which can be found in [40].

Finally, in 5h we have a mixed boson/fermion loop. The subdiagram containing the

messengers is similar to the diagram for the gaugino mass. The only difference is the

direction of the arrows on the gaugino lines. Indeed the one-loop sub-diagram corresponds

to a contribution to the kinetic term rather than a mass term for the gauginos. (The mass

term will of course contribute as well but will be suppressed by quark masses.) Using

eq. (3.22) we find,

Figure 5h =
∑

ik

(|U †
i1Q1k + U †

i2Q2k|2 + |Q†
k3V1i +Q†

k4V2i|2)L(m̂1/2,i, m̂
2
0,k) , (3.49)

where L is again the appropriate loop integral from [40].

Summing over all diagrams we find the sfermion masses which are typically significantly

larger than the gaugino masses calculated earlier. Indeed, the scalar masses roughly follow
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Contribution (in units of µX) ρ, ρ̃, Z, Z̃ X M̃ M total

Tree-level constrained 8.22×10−5 0 0 8.22×10−5

Unconstrained (tree scalar mass matrix) 5.34×10−3 0 0 5.34×10−3

Unconstrained (mass matrix with CW) 2.81×10−3 4.49×10−3 8.3×10−5 7.38×10−3

Table 5. Contributions to the reduced gaugino mass m1/2 for the meson-deformed 1-1-5 model of

table 4.

the estimate

m2
f̃
∼ g4

(16π2)2
µ2. (3.50)

This is precisely the leading order effect which in our direct mediation scenario is absent

for the gaugino masses.

So far we have taken into account the ρ, Z (or similarly the σ,M) contributions which

as we just explained give a non-vanishing leading order effect. In distinction to our earlier

calculation of the gaugino masses we do not need to include the sub-dominant contributions

from other messengers (which were massless at tree-level).9

3.3 Summary of signatures in the directly mediated meson-deformed model

Here we present and summarize our result for gaugino and sfermion masses for a variety

of our meson-deformed models. These results are most conveniently expressed in terms of

the reduced gaugino (m1/2)

MλA
=

g2
A

16π2
m1/2 , (3.51)

and scalar masses (m2
0)

m2
sferm =

∑

A

g4
A

(16π2)2
CASAm

2
0. (3.52)

We similarly define reduced masses for the pseudo-Goldstone components of the direct

messengers (appearing in tables 7, 11, 17) by including a factor of 16π2,

mreduced = 16π2mphys (3.53)

The first three tables 5, 6 and 7 summarize our results for the mass spectrum at the

high scale for meson-deformed 1-1-5 model specified in table 4.

The following four tables 8, 9, 10 and 11 give results for the same 1-1-5 model but

with a different choice of parameters. Comparing the last lines in table 5 and table 9 we

see that the contribution from the X messengers can be of the same order but the relative

sizes of the different contributions can vary quite significantly.

9Inclusion of such effects would be actually not completely straightforward because our mass-insertion

technique breaks down when used in the two-loop diagrams for the scalars. The reason for this can be traced

to the non-cancelation of the UV cutoff dependent terms. This problem would disappear if one performs a

complete higher-loop calculation. In any case since the leading order result for scalars was non-vanishing

we do not expect any significant changes from this.
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Contribution (in units of µX) ρ, ρ̃, Z, Z̃

Tree-level constrained 0.48

Unconstrained (tree scalar mass matrix) 0.48

Unconstrained (mass matrix with CW) not consistent

Table 6. Contributions to the reduced sfermion masses m0 (only ρ, ρ̃, Z, Z̃ contribution) for the

meson-deformed 1-1-5 model of table 4. The third line in the table indicates that the use of the full

CW corrected masses is inappropriate in this case (see text).

Particle Reduced Mass/µX

sfermions 0.48

gauginos 7.4 × 10−3

χf 0.13

χs 1.33, 2.35

Mf , M̃f 0.42

Ms, M̃s 9.58, 9.73

Table 7. Reduced masses for the various particles charged under the SM gauge group for the

meson-deformed 1-1-5 model of table 4, with MSUSY/µX = 2.7.

Vev κ/µX =ξ/µX η/µX p/µX χ/µX A/µX B/µX C/µX

Tree-level constrained 4.7610 0 −0.0881 −2.5014 17.1430 13.6110 215.92

Unconstrained 4.7603 0.0017 −0.0783 −2.5127 17.1978 13.5634 217.38

Table 8. Stabilized vevs for a meson model with Nf = 7, Nc = 6, h = 1, m1/µX = 0.05,

m2/µX = 0.01, µY /µX = 5, µP /µX = 3 and λ = 0.01.

In total both models give rather similar predictions. with scalars being two orders of

magnitude heavier than the gauginos. This is a “slightly” split-SUSY scenario which is

expected in all of our direct mediation ISS-SSM models.

In addition, as can be seen from tables 7, 11, some of the messengers which are charged

under the Standard Model gauge group are relatively light with masses somewhere in

between the scalars and the gauginos.

The remaining six tables in this subsection give an example for a 2-2-3 model — a

model with a non-trivial magnetic group. This model has very similar features with the

only exception being that the reduced gaugino and sfermion masses differ for the different

gauge groups. This shows that one can achieve a deviation from the simple scaling of the

full physical masses with the gauge couplings eqs. (3.51) and (3.52) because m1/2 and m0

now actually depend on the index A specifying the gauge group.

We have generated the soft SUSY breaking terms of the SSM at the high (messenger)
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Contribution (in units of µX) ρ, ρ̃, Z, Z̃ X M̃ M total

Tree-level constrained 5.91 × 10−5 0 0 5.91 × 10−5

Unconstrained (tree scalar mass matrix) 3.45 × 10−3 0 0 3.45 × 10−3

Unconstrained (mass matrix with CW) 1.78 × 10−3 7.06 × 10−4 1.34 × 10−5 2.50 × 10−3

Table 9. Contributions to the reduced gaugino mass m1/2 for the meson-deformed 1-1-5 model of

table 8.

Contribution (in units of µX) ρ, ρ̃, Z, Z̃

Tree-level constrained 0.53

Unconstrained (tree scalar mass matrix) 0.54

Unconstrained (mass matrix with CW) not consistent

Table 10. Contributions to the reduced sfermion masses m0 (only ρ, ρ̃, Z, Z̃ contribution) for the

meson-deformed 1-1-5 model of table 8.

Particle Reduced Mass/µX

sfermion 0.54

gauginos 2.5 × 10−3

χf 8.83 × 10−2

χs 2.39, 2.71

Mf , M̃f 0.24

Ms, M̃s 10.20, 10.16

Table 11. Reduced masses for the various particles charged under the SM gauge group for the

meson-deformed 1-1-5 model of table 8, with MSUSY/µX = 2.7.

Vev κ/µX=ξ/µX η/µX p/µX χ/µX A/µX B/µX C/µX

Tree-level constrained 4.5607 0 −1.3999 −4.3327 33.2544 12.6299 105.071

Unconstrained 4.5613 0.0021 −1.3433 −4.2233 33.5579 12.4704 103.038

Table 12. Stabilized vevs for a meson model with Nf = 7, Nc = 5, h = 1, m1/µX = 0.03,

m2/µX = 0.05, µY /µX = 5, µP /µX = 3 and λ = 0.01.

scale. In order to determine the mass spectrum at the electroweak scale the soft SUSY

breaking parameters given in the tables should be renormalization group evolved. But we

expect that the overall pattern remains the same.

In summary, we see that all our direct models have the following features: 1) A heavy

scalar spectrum; 2) The pseudo-Goldstone direct messengers are relatively light and the

effective low energy theory is always extended away from the MSSM; 3) We can have
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Contribution (in units of µX) σ, σ̃, N , Ñ P M̃ M total

Tree-level constrained −4.5×10−3 0 0 −4.5×10−3

Unconstrained (tree scalar mass matrix) 4.1×10−3 0 0 −4.4×10−3

Unconstrained (mass matrix with CW) −4.52×10−2 -4.17×10−4 −3.6×10−4 −4.60×10−2

Table 13. Contributions to the reduced mass m
(2)
1/2 of the SU(2) gaugino for the meson-deformed

2-2-3 model of table 12.

Contribution (in units of µX) ρ, ρ̃, Z, Z̃ χ M̃ M total

Tree-level constrained 2.8×10−3 0 0 2.8×10−3

Unconstrained (tree scalar mass matrix) 1.1×10−2 0 0 1.1×10−2

Unconstrained (mass matrix with CW) 1.05×10−2 1.05×10−2 −2.4×10−4 2.1×10−2

Table 14. Contributions to the reduced gluino mass m
(3)
1/2 for the meson-deformed 2-2-3 model of

table 12.

Contribution (in units of µX) σ, σ̃, N , Ñ

Tree-level constrained 2.93

Unconstrained (tree scalar mass matrix) 2.94

Unconstrained (mass matrix with CW) not consistent

Table 15. Contributions to the reduced masses m
(2)
0 of the SU(2) sfermions (only ρ, ρ̃, Z, Z̃

contribution) for the meson-deformed 2-2-3 model of table 12.

Contribution (in units of µX) ρ, ρ̃, Z, Z̃

Tree-level constrained 1.74

Unconstrained (tree scalar mass matrix) 1.74

Unconstrained (mass matrix with CW) not consistent

Table 16. Contributions to the SU(3) sfermion masses m
(3)
0 (only σ, σ̃, N , Ñ contribution) for

the meson-deformed 2-2-3 model of table 12.

deviations from the standard gaugino/sfermion mass pattern dictated by the Standard

Model gauge couplings.

4 The baryon-deformed ISS theory and its mediation patterns

In this section we revisit models with the hidden sector given by baryon-deformed ISS

theory introduced in [5, 8]. These models form extensions/deformations of the ISS which

are complimentary to the meson deformations discussed above. We will extend the analysis

to include the effects of the X and M messengers.

– 26 –



J
H
E
P
0
3
(
2
0
0
9
)
0
1
7

Particle Reduced Mass/µX

sfermions SU(2) 2.95

sfermions SU(3) 1.74

gauginos SU(2) 4.6 × 10−2

gauginos SU(3) 2.1 × 10−2

χf 0.41

χs 14.46, 15.06

Pf 0.62

Ps 5.40, 8.56

Mf , M̃f 0.47

Ms, M̃s 11.79, 11.56

Table 17. Reduced masses for the various particles charged under the SM gauge group for the

meson-deformed 2-2-3 model of table 12 with MSUSY/µX = 2.96.

4.1 The baryon-deformed model

We start with an ISS model with Nc = 5 colours and Nf = 7 flavours, which has a magnetic

dual description as an SU(2) theory, also withNf = 7 flavours and following [5, 8] we deform

this theory by the addition of a baryonic operator. The resulting superpotential is given by

W = Φijϕi.ϕ̃j − µ2
ijΦji +mεabεrsϕ

a
rϕ

b
s (4.1)

where i, j = 1 . . . 7 are flavour indices, r, s = 1, 2 run over the first two flavours only,

and a, b are SU(2) indices. This is the superpotential of ISS with the exception of the

last term which is a baryon of the magnetic SU(2) gauge group. Note that the 1,2

flavour indices and the 3. . . 7 indices have a different status and the full flavour symmetry

SU(7)f is broken explicitly to SU(2)f × SU(5)f . As before, the direct gauge mediation

is implemented by gauging the SU(5)f factor and identifying it with the parent SU(5)

gauge group of the Standard Model. The matter field decomposition under the magnetic

SU(2)gauge × SU(5)f × SU(2)f and their U(1)R charges are given in table 1 with R = 1.

Using the notation established in the previous sections for the meson model the baryon-

deformed model defined by eq. (4.1) is a 2-5 model. It is straightforward to consider

alternatives such as a 1-5 model where the magnetic gauge group is empty and the baryon

deformation is a linear operator,

W1−5 = Φijϕi.ϕ̃j − µ2
ijΦji + kϕ1, (4.2)

or, for example, a 2-2-3 model as before. In all of those models Landau poles inherent in the

direct mediation can be avoided by using the deflected unification mechanism of [31]. This

works most effectively in the 1-5 model due to its minimal matter content. The discussion

of these models is virtually identical to that which we will now present for the 2-5 model.

At the Lagrangian level this baryon-deformed model respects R-symmetry. Thanks to

the baryon deformation, the structure of R-charges allows for spontaneous R symmetry
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breaking and it was shown in [5] that this does indeed happen. We also stress that our

baryon deformation is the leading order deformation of the ISS model that is allowed by

R-symmetry of the full theory imposed at the Lagrangian level. As explained in [8] this

is a self-consistent approach. For example, terms quadratic in the meson Φ that could

arise from lower dimensional irrelevant operators in the electric theory are forbidden by

R-symmetry. Thus, our deformation is described by a generic superpotential and (4.1)

gives its leading-order terms.

Using the SU(2)f ×SU(5)f symmetry, the matrix µ2
ij can be brought to the form (2.3).

The baryon operator can be identified with a corresponding operator in the electric theory.

Indeed the mapping from baryons BE in the electric theory to baryons BM of the magnetic

theory, is BMΛ−N
ISS ↔ BEΛ−Nc

ISS (we neglect factors of order one). Thus one expects

m ∼MP l

(

ΛISS

MP l

)Nf−2N

=
Λ3

ISS

M2
P l

, (4.3)

where MP l represents the scale of new physics in the electric theory at which the irrelevant

operator BM is generated.

The F -term contribution to the potential at tree-level is

V =
∑

ar

|Yrsφ̃as + Zrîρ̃
a
î

+ 2mεabεrsφ
b
s|2 (4.4)

+
∑

âi

|Z̃îrφ̃ar +Xîĵ ρ̃
a
ĵ
|2 +

∑

as

|φarYrs + ρa
î
Z̃îs|2 +

∑

aĵ

|φarZrĵ + ρa
î
Xîĵ |2

+
∑

rs

|(φr.φ̃s − µ2
Y δrs)|2 +

∑

rî

|φr.ρ̃î|2 +
∑

rî

|ρî.φ̃s|2 +
∑

îĵ

|(ρî.ρ̃ĵ − µ2
X δ̂iĵ)|2

where a, b are SU(2)mg indices. The flavor indices r, s and î, ĵ correspond to the SU(2)f
and SU(5)f , respectively. It is straightforward to see that the rank condition works as in

ISS; that is the minimum for a given value of X,Y,Z and Z̃ is along ρ = ρ̃ = 0 and

〈

φ
〉

=
µ2
Y

ξ
I2 ,

〈

φ̃
〉

= ξ I2, (4.5)

where ξ parameterizes a runaway direction that will be stabilized by the Coleman-Weinberg

potential eq. (2.18). This then gives Z = Z̃ = 0. In addition Y becomes diagonal and real

(assuming m is real). Defining
〈

Yrs
〉

= η I2, the full potential is

V = 2

∣

∣

∣

∣

η ξ + 2m
µ2
Y

ξ

∣

∣

∣

∣

2

+ 2

∣

∣

∣

∣

η
µ2
Y

ξ

∣

∣

∣

∣

2

+ 5µ4
X . (4.6)

Using R symmetry we can choose ξ to be real.10 Minimizing in η we find

η = −2m

(

ξ2

µ2
Y

+
µ2
Y

ξ2

)−1

. (4.7)

10The phase of ξ corresponds to the R-axion.
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Vev κ/µX ξ/µX η/µX χ/µX

Tree-level constrained 1.1005 8.1781 −0.0793 −0.3493

Unconstrained 1.1004 8.1766 −0.0792 −0.3470

Table 18. Stabilized VEVs for a 2-5 baryon-deformed model with Nf = 7, Nc = 5, h = 1,

m/µX = 0.3 and µY /µX = 3.

Vev κ/µX ξ/µX η/µX χ/µX

Tree-level constrained 1.76214 5.1074 −0.05248 −0.20720

Unconstrained 1.7620 5.1067 −0.05227 −0.2037

Table 19. Stabilized VEVs for a 1-5 baryon-deformed model with Nf = 6, Nc = 5, h = 1,

k/µ2
X = 0.3 and µY /µX = 3.

Substituting η(ξ) into eq. (4.6) we see that ξ → ∞ is a runaway direction along which

V (ξ) = 8m2µ2
Y

(

ξ6

µ6
Y

+
ξ2

µ2
Y

)−1

+ 5µ4
X . (4.8)

Since in the limit ξ → ∞, the scalar potential V is non-zero, we have a runaway to

broken supersymmetry, hence the Coleman-Weinberg potential again lifts and stabilizes

this direction, which is indeed the case [5]. As in eqs. (2.21) we parameterise the pseudo-

Goldstone and runaway VEVs by

〈

φ̃
〉

= ξ I2

〈

φ
〉

= κ I2 (4.9)
〈

Y
〉

= η I2

〈

X
〉

= χ I5. (4.10)

Stabilized VEVs for a 2-5 and a 1-5 model are shown in tables 18 and 19, respectively. Con-

strained VEVs in these tables arise from using the tree-level equations of motion eqs. (4.5)

and (4.7). Again, the difference between constrained and unconstrained VEVs is rather

small but the general discussion of subsection 3.2 indicates that this difference has crucial

effects on the generation of gaugino masses in direct mediation.

Explicit mediation has been studied in [8] and leads to the usual standard GMSB

pattern (as also discussed for the meson-deformed model in subsection 3.1).

4.2 Summary of signatures in the directly mediated baryon-deformed model

The basic equations for calculating gaugino and scalar masses are the same as in subsec-

tion 3.2. Only the VEV configurations and the structure of the messenger mass matrices

know about the difference in the deformation.

Our results for the soft SUSY breaking parameters at the messenger scale are presented

below following the same structure as before. The first three tables correspond to the 2-5

model given in table 18. The next three correspond to the 1-5 model specified in table 19.
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Contribution ρ, ρ̃, Z, Z̃ χ total

Tree-level constrained 4.17 × 10−5 0 4.17 × 10−5

Unconstrained (tree scalar mass matrix) 1.74 × 10−3 0 1.74 × 10−3

Unconstrained (mass matrix with CW) −1.57 × 10−3 9.61 × 10−7 −1.57 × 10−3

Table 20. Contributions to the reduced gaugino mass for the baryon-deformed 2-5 model of

table 18.

Contribution ρ, ρ̃, Z, Z̃

Tree-level constrained 0.70

Unconstrained (tree scalar mass matrix) 0.70

Unconstrained (mass matrix with CW) not consistent

Table 21. Contributions to the reduced sfermion masses (only ρ, ρ̃, Z, Z̃ contribution) for the

baryon-deformed 2-5 model of table 18.

Particle Mass/µP

sfermion 0.70

gauginos 1.57 × 10−3

χf 1.92 × 10−2

χs 2.923, 2.925

Table 22. Reduced masses for the various particles charged under the SM gauge group for the

baryon-deformed 2-5 model of table 18.

Evidently, the dominant contribution to the gaugino mass comes from unconstraining

the VEVs and putting in the full one-loop mass matrices. Overall this leads again

to models with heavy scalars and, in distinction to our earlier paper [8] (where the

constrained VEVs were used), we do not need to fine tune the different µ2 parameters to

achieve a moderately split spectrum. It is remarkable that in all of the directly mediated

ISS models gaugino masses are this sensitive to quantum corrections (due to the inevitable

cancellation at tree-level).

5 Conclusions

We have investigated different scenarios of gauge mediation which incorporate a dynamical

SUSY breaking (DSB) sector coupled to a supersymmetric Standard Model. The DSB

sector was realized in terms of two different types of deformations of the ISS model. These

models generate all SUSY breaking parameters at the messenger scale in a calculable way

from relatively simple supersymmetric Lagrangians. In all of the models investigated we

find rather model independent signatures for the direct gauge mediation which include:
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Contribution ρ, ρ̃, Z, Z̃ χ total

Tree-level constrained 2.67 × 10−5 0 2.67 × 10−5

Unconstrained (tree scalar mass matrix) 7.49 × 10−4 0 7.49 × 10−4

Unconstrained (mass matrix with CW) −5.97 × 10−4 3.60 × 10−7 −5.96 × 10−4

Table 23. Contributions to the reduced gaugino mass for the baryon-deformed 1-5 model of

table 19.

Contribution ρ, ρ̃, Z, Z̃

Tree-level constrained 0.61

Unconstrained (tree scalar mass matrix) 0.61

Unconstrained (mass matrix with CW) not consistent

Table 24. Contributions to the reduced sfermion masses (only ρ, ρ̃, Z, Z̃ contribution) for the

baryon-deformed 1-5 model of table 19.

Particle Mass/µP

sfermions 0.61

gauginos 5.96 × 10−4

χf 1.1 × 10−2

χs 2.921, 2.919

Table 25. Reduced masses for the various particles charged under the SM gauge group for the

baryon-deformed 1-5 model of table 19.

• Scalars are typically two orders of magnitude or more heavier than gauginos.

• The low energy effective theory of the visible sector i.e. particles charged under the

Standard Model gauge groups is necessarily extended by light pseudo-Goldstone mes-

senger fields.

• Direct mediation models easily allow for deviations from the mass patterns dictated

by the gauge couplings, familiar from standard gauge mediation.

It is also possible to implement indirect gauge mediation, by adding an explicit mes-

senger sector. In this case we find a rather standard pattern of gauge mediated

supersymmetry breaking.

Finally we would like to briefly comment on how the usual little hierarchy problem of

the supersymmetric Standard Model manifests itself. First of all, the non-observation of

the Higgs at LEP requires that the mass of the lightest Higgs, mh0 > 115GeV. On the

other hand, supersymmetric models predict an upper bound so that

(115GeV)2 < m2
h0 < cos2(2β)m2

Z + rad. corr. , (5.1)
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where the radiative corrections ∼ m2
t log(mt̃/mt). To fulfill this one needs a rather large

stop mass, which our models deliver. On the other hand, the conditions for electroweak

symmetry breaking require that at the electroweak scale

m2
Z = −2(m2

Hu
+ |µMSSM|2) + O(1/ tan2(β)). (5.2)

The scalar masses, including mHu , and their loop corrections are of the order of mt̃ and

are (as just argued) much bigger than the electroweak scale. This requires a fine-tuning

of µMSSM of the order of 10−2. In the direct mediation scenarios with a mildly split

SUSY spectrum, mt̃ is bigger than the minimal required value from eq. (5.1) resulting in

a somewhat higher degree of fine-tuning of the order of 10−4 − 10−5. In this paper we are

treating µMSSM as a free parameter and do not attempt to solve this problem.
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A Leading order contribution to the gaugino mass

To develop a perturbative approximation of eqs. (3.23)–(3.24) we note that when the

F -terms are small compared to µ2, we may first go to the “fermion-diagonal basis”, by

making a rotation on the scalars given by

Q0 =

(

U 0

0 V

)

(A.1)

where the U and V matrices are the fermion-diagonalisation matrices defined in (3.19).

In this basis the scalar mass-squareds are

m̃2
sc = Q†

0m
2
scQ0 ≈

(

m̂2
f A

A† m̂2
f

)

(A.2)

where

Aij = U †
iaW

abcWcVbj = (U †FV )ij (A.3)

in terms of the F -term matrix Fab ≡W abcWc. Evaluating the diagram for the gaugino mass

in this basis (cf. eqs. (3.23)-(3.24)) and suppressing the overall factor 2g2
Atr(TATB), yields,

∫

d4k

(2π)4

4
∑

k,l=1

2
∑

i,j=1

(U †
i1Q0,1k + U †

i2Q0,2k)

(

1

k2 − m̃2
sc

)

kl

(

m̂f

k2 − m̂2
f

)

ij

(Q†
0,l3V1j +Q†

0,l4V2j)

=

∫

d4k

(2π)4

2
∑

i,j,k,l=1

(U †
i1U1k + U †

i2U2k)

(

1

k2 − m̃2
sc

)

k,(l+2)

(

m̂f

k2 − m̂2
f

)

ij

(V †
l1V1j + V †

l2V2j)

=

∫

d4k

(2π)4

2
∑

i,j,k,l=1

δik

(

1

k2 − m̃2
sc

)

k,(l+2)

(

m̂f

k2 − m̂2
f

)

ij

δjl, (A.4)
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where, in the last step, we have made use of the unitarity of the U and V matrices.

The fermion propagator is already diagonal, but the boson propagator has off diagonal

terms ∼ A. Expanding in powers of A we have,
(

1

k2−m̃2
sc

)

k,(l+2)

=

(

1

k2−m̂2
f

A 1

k2−m̂2
f

+
1

k2−m̂2
f

A 1

k2−m̂2
f

A† 1

k2−m̂2
f

A 1

k2−m̂2
f

+· · ·
)

kl

(A.5)

Using that m̂f is a diagonal matrix we find to lowest order in A,

MλA = 2g2
A tr(TATB)Tr(AI(1)(m̂f)) (A.6)

where

I
(1)
ij = diag(I(m̂ii)) (A.7)

and

I(1)(m) =

∫

d4k

(2π)4
m

(k2 −m2)3
=

1

32π2

1

m
. (A.8)

Using the explicit form of I(1) we have the leading order contribution to the gaugino masses:

MλA =
g2
A

16π2
tr(TATB)Tr(Am̂−1

f ) =
g2
A

16π2
tr(TATB)Tr(Fm−1

f ) . (A.9)

This reproduces eq. (3.27).
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